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Abstract 
Wastewater treatment is essential for environmental protection, yet traditional biological methods often struggle 
with efficiency, particularly under varying influent conditions. This study addresses the limitations of 
conventional biological treatment by integrating machine learning (ML) and genetic optimization to enhance 
degradation efficiency. The objectives were to develop an AI-driven model that optimizes key parameters, such 
as temperature and dissolved oxygen, to improve Chemical Oxygen Demand (COD) and Biological Oxygen 
Demand (BOD) removal. Data collection included influent and effluent quality parameters, which were 
preprocessed through normalization and outlier handling. The methodology involved testing several ML 
algorithms, with Gradient Boosting emerging as the most accurate, achieving Root Mean Square Error (RMSE) 
values of 7.1 for COD and 6.8 for BOD. Genetic algorithms then optimized parameter settings, achieving COD 
and BOD reductions of 58% and 55%, respectively, compared to traditional methods’ 42% and 38%. Sensitivity 
analysis identified temperature and dissolved oxygen as critical factors, confirming the effectiveness of real-time, 
AI-driven adjustments in maintaining pollutant removal efficiency. These findings establish AI-driven 
optimization as a promising, scalable solution for enhancing wastewater treatment processes, offering significant 
improvements over conventional approaches. 
 
 Keywords: Machine learning, genetic optimization, wastewater treatment, biological degradation, parameter 
optimization 

 
1 Introduction 
Wastewater treatment is essential to protect environmental resources and human health, reducing the negative 
impact of contaminants discharged into natural water bodies. As industrial, agricultural, and residential activities 
generate increasing amounts of wastewater, the need for effective treatment has intensified (Sadare et al., 2024). 
Wastewater is often polluted with organic compounds, harmful chemicals, and pathogens that, if untreated, can 
lead to severe ecological damage and public health risks. Biological degradation, a core process in wastewater 
treatment, employs microbial activity to break down organic contaminants in the wastewater (Sadare et al., 2024). 
This method is widely valued for its sustainability and cost-effectiveness, as it utilizes naturally occurring 
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microbial communities to degrade pollutants. However, this process is highly sensitive to fluctuations in 
environmental conditions, which can hinder its overall effectiveness. 
Despite the advantages, conventional biological treatment methods face notable limitations. Biological treatment 
relies heavily on specific operational conditions, such as pH, temperature, organic load, and microbial balance, 
which can be challenging to control(Sheik et al., 2024). These systems often require long retention times and 
significant infrastructure, limiting their ability to respond quickly to changes in wastewater characteristics. 
Additionally, high organic loads can overwhelm microbial communities, disrupting treatment efficiency. As a 
result, traditional biological processes can struggle to meet increasingly stringent regulatory standards for effluent 
quality, especially as treatment demands rise due to population growth and industrial expansion. To maintain high 
degradation efficiency, optimizing these processes is crucial, yet conventional approaches fall short in their 
adaptability and response time(Vivek Vardhan & Srimurali, 2016). 
Recent advancements in artificial intelligence (AI) and machine learning (ML) offer a new pathway for improving 
the efficiency of biological treatment processes. Machine learning algorithms can model the complex interactions 
that define biological degradation processes, allowing for better prediction and optimization of treatment 
outcomes. By analyzing historical and real-time data, AI-driven models can identify patterns and optimize 
treatment parameters for biological degradation, enabling more precise and responsive control. Various machine 
learning models, including neural networks, support vector machines, and decision trees, have shown potential in 
predicting treatment outcomes, while optimization algorithms such as genetic algorithms can dynamically adjust 
parameters to improve performance(Sounthararajan et al., 2020). These approaches promise not only to enhance 
pollutant removal but also to reduce operational costs, making wastewater treatment more resource-efficient. 
Despite these promising developments, several research gaps remain in applying AI and ML for optimizing 
biological wastewater treatment. Most studies focus on single-stage optimization without addressing the multi-
parameter nature of biological degradation(Hassanien et al., 2023). Additionally, research on integrating ML 
models with real-time control systems is limited, which is essential for adapting to variable conditions in 
wastewater characteristics. Furthermore, while basic ML models are widely explored, advanced machine learning 
techniques such as ensemble methods and deep learning have yet to be thoroughly investigated for improving 
microbial degradation efficiency. Addressing these gaps could lead to more robust AI-driven solutions, capable 
of delivering consistent treatment quality across diverse and changing conditions. 
The objective of this study is to overcome these limitations by employing an AI-driven machine learning model 
to optimize the biological degradation process in wastewater treatment. Specifically, this research will focus on 
collecting and preprocessing key data, including COD, BOD, pH, temperature, and dissolved oxygen, to establish 
a robust data foundation. It will apply and compare various machine learning algorithms to predict degradation 
efficiency and incorporate optimization algorithms, such as genetic algorithms, to dynamically adjust parameters 
and maximize pollutant removal(Kang et al., 2024). Additionally, a sensitivity analysis will be conducted to 
identify the most influential parameters affecting biological degradation, guiding future improvements in 
treatment operations. This study aims to bridge existing gaps by providing a comprehensive framework that 
leverages AI and ML to enhance wastewater treatment processes, ultimately contributing to more sustainable and 
effective environmental practices. 
 
2. Materials and Methods 
 
The data collection and processing phase was crucial in developing a reliable dataset to train machine learning 
models for optimizing biological degradation in wastewater treatment. Parameters such as Chemical Oxygen 
Demand (COD), Biological Oxygen Demand (BOD), pH, temperature, and dissolved oxygen were selected to 
represent influent and effluent quality based on their alignment with standard measures in water quality 
assessments, such as those in ISO 5667 and APHA standards (APHA, 2017; ISO, 2019) (Green et al., 2000). To 
ensure data consistency, preprocessing steps included normalization, interpolation to handle missing values, and 
outlier detection, each applied to adhere to quality control practices commonly accepted in environmental data 
handling (EPA, 2020). This structured approach helped to reduce data variability and increase the reliability of 
subsequent machine learning model training, which is critical in achieving meaningful pollutant reduction 
predictions (Patel et al., 2021). 
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Following data preparation, the focus shifted to selecting appropriate machine learning algorithms. Several 
algorithms, including regression models, classification algorithms, and decision trees, were evaluated based on 
predictive accuracy and computational efficiency. Regression models, for example, were used to predict 
continuous outcomes related to degradation efficiency, while classification algorithms categorized influent quality 
based on the values of key parameters, such as pH and temperature, with set threshold values derived from 
standards like WHO Guidelines for Water Quality (WHO, 2017). Decision trees visually illustrated each 
parameter's influence on degradation efficiency, supporting feature selection by identifying variables that had the 
strongest predictive power, while feature engineering derived additional parameters from existing ones, such as 
combining pH and dissolved oxygen levels to indicate microbial activity impact (Wang et al., 2024). Through 
correlation analysis, non-significant features were removed, thus reducing computational complexity while 
retaining essential predictive accuracy. 
 
To further optimize model performance, genetic algorithms were applied to dynamically adjust treatment 
parameters, enhancing degradation efficiency. Using a 70/30 split between training and testing datasets, validation 
was reinforced with cross-validation, and hyperparameter tuning was performed to refine the model’s predictive 
capability. Performance metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-
squared values were calculated to evaluate each model's accuracy in predicting COD and BOD reductions. 
Integrating these machine learning predictions with genetic algorithms allowed for real-time parameter 
adjustments, contributing to improved pollutant removal rates and operational efficiency (Oh et al., 2014). 
Numerical values for COD and BOD reduction aligned with regulatory thresholds, such as COD values not 
exceeding 125 mg/L for effluents per EU standards (Directive 91/271/EEC), and BOD reductions aiming at a 25 
mg/L threshold, ensuring that optimized processes complied with environmental standards. 
 
3. Results and Discussion 
The results from this study demonstrate how integrating machine learning with genetic optimization significantly 
enhances the biological degradation efficiency in wastewater treatment, especially for reducing Chemical Oxygen 
Demand (COD) and Biological Oxygen Demand (BOD). 
The data preparation phase provided a reliable foundation for model training. As shown in Table 1: Summary of 
Data Attributes and Preprocessing Steps, essential parameters, including COD, BOD, pH, temperature, and 
dissolved oxygen, were collected and preprocessed following regulatory standards (Vivek Vardhan & Srimurali, 
2016). Normalization, handling of missing values through interpolation, and outlier detection ensured data quality 
and minimized variability, aligning with recommendations from environmental data handling standards (EPA, 
2020). This structured approach improved model reliability, allowing for more accurate pollutant reduction 
predictions and optimization processes. 
 
Table 1: Summary of Data Attributes and Preprocessing Steps  

Attribute Description Unit Data Type 
Preprocessing 
Step 

COD 
Chemical Oxygen 
Demand 

mg/L Continuous 
Normalization, 
outlier handling 

BOD 
Biological Oxygen 
Demand 

mg/L Continuous 
Normalization, 
handling missing 
values 

pH 
Acidity/Alkalinity 
Level 

- Continuous Outlier handling 

Temperature 
Ambient 
Temperature 

°C Continuous Normalization 
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Dissolved 
Oxygen 

Oxygen 
concentration 

mg/L Continuous Normalization 

Microbial 
Activity 

Colony-Forming 
Units 

CFU/mL Continuous 
Log 
Transformation 

 
Once the data was prepared, several machine learning algorithms were evaluated for predictive performance and 
computational efficiency, including regression models, classification algorithms, and decision trees. Regression 
models were particularly effective for predicting continuous outcomes in degradation efficiency, while 
classification algorithms helped categorize influent quality. Decision trees offered insights into parameter 
influences, assisting in feature selection. This process flow is illustrated in Figure 1: AI-Driven Optimization 
Process Flowchart, which outlines data input, model predictions, and parameter adjustments via genetic 
algorithms, enabling dynamic and adaptive control over key parameters. 
 

 
Figure 1: A conceptual flowchart showing AI-driven optimization stages. 

The model's predictive performance, as summarized in Table 2: Model Performance Metrics for Selected Machine 
Learning Algorithms, confirmed that Gradient Boosting achieved the highest accuracy, with Root Mean Square 
Error (RMSE) values of 7.1 for COD and 6.8 for BOD, and R-squared values above 0.90  
Table 2: Model Performance Metrics for Selected Machine Learning Algorithms 

Model 
RMSE 
(COD) 

MAE 
(COD) 

RMSE 
(BOD) 

MAE 
(BOD) 

R² 
(COD) 

R² 
(BOD) 

Linear 
Regression 

12.8 10.2 11.5 9.8 0.82 0.79 
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Random Forest 
Regression 

8.4 6.5 7.9 6.1 0.92 0.9 

Gradient 
Boosting 

7.1 5.8 6.8 5.2 0.94 0.93 

Support Vector 
Machine 

10.6 8.9 9.2 7.6 0.87 0.84 

 
These findings align with research by (Ren et al., 2023), which show that ensemble models like Gradient Boosting 
effectively capture complex environmental data patterns.  
 

 
Figure 2: Comparison of predicted COD and BOD reduction with actual values post-optimization, demonstrating 
model accuracy and impact. 
| Table 3: Optimized Parameter Settings and Their Impact on Biological Degradation Efficiency  

Parameter 
Initial 
Value 

Optimized 
Value 

COD 
Reduction % 
(Initial) 

COD Reduction 
% (Optimized) 

BOD 
Reduction 
% (Initial) 

BOD 
Reduction % 
(Optimized) 

Temperature 
(°C) 

25 28 35 48 32 46 

Dissolved 
Oxygen 
(mg/L) 

4.5 6 37 52 34 50 

Retention 
Time (hours) 

6 8 42 56 39 53 

Microbial 
Activity 

2.5 3 40 54 36 52 
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The results met EU regulatory standards for wastewater treatment, with COD levels maintained below 125 mg/L 
and BOD under 25 mg/L, confirming compliance with Directive 91/271/EEC.  Figure 2: Predicted vs. Actual 
Degradation Efficiency (COD/BOD Reduction) provides a visual comparison of predicted versus actual COD and 
BOD reductions, showing strong alignment, which reflects the effectiveness of optimized parameters. 
Adjustments such as increasing temperature from 25°C to 28°C and dissolved oxygen from 4.5 mg/L to 6.0 mg/L 
resulted in substantial improvements, with COD reduction increasing from 35% to 48% and BOD from 32% to 
46%. These findings align with those of (Vardhan & Srimurali, 2018), which observed enhanced pollutant 
degradation under optimized conditions. 
 

 
Figure 3: Chart comparing initial and optimized values of key treatment parameters. 

 
Figure 3: Optimized Parameter Settings for Biological Degradation Efficiency illustrates the adjustments made to 
key parameters, showing the difference between initial and optimized values, and highlighting how these changes 
contribute to increased COD and BOD reduction. 
Sensitivity analysis, displayed in Figure 4: Sensitivity Analysis Results Indicating Key Parameters for 
Degradation Efficiency, identifies temperature and dissolved oxygen as the most influential parameters impacting 
COD and BOD degradation rates. Temperature directly affects microbial metabolism, while dissolved oxygen 
levels support microbial growth, both critical to efficient pollutant breakdown. These results are consistent with 
findings by (Sadare et al., 2024), which emphasize the need for precise control over these factors in microbial-
driven degradation processes. 
 

 
Figure 4: Bar graph showing the relative impact of temperature, pH, dissolved oxygen, and retention time on 
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COD and BOD degradation rates. 
Table 4: Comparative Analysis of Traditional vs. AI-Optimized Treatment Methods further highlights the 
advantages of AI-driven optimization, with the AI-optimized treatment achieving an average COD reduction of 
58% and BOD reduction of 55%, compared to 42% and 38% reductions in traditional methods, respectively. This 
efficiency increase of 16% demonstrates the impact of machine learning in providing dynamic, real-time 
adjustments that outperform conventional methods, as similarly reported by (Sahu et al., 2023). 
Table 4: Comparative Analysis of Traditional vs. AI-Optimized Treatment Methods 

Method 
Average 
COD 
Reduction % 

Average 
BOD 
Reduction % 

Efficiency 
Increase % 

Traditional Biological 
Treatment 

42 38 0 

AI-Optimized 
Treatment 

58 55 16 

 
Figure 5: Time-Series Analysis of Degradation Efficiency Post-Optimization presents the stability of COD and 
BOD reduction over time, confirming the adaptability of AI-optimized treatment under fluctuating influent 
conditions. This figure shows that AI-driven adjustments maintain high pollutant removal rates consistently, 
supporting the long-term applicability of this approach in diverse wastewater environments (Sahu et al., 2023; 
Sheik et al., 2024). 
 

 
Figure 5: Time-series graph illustrating stable COD and BOD reduction rates over time 

These results collectively confirm that machine learning and genetic optimization enable accurate predictions, 
real-time parameter adjustments, and long-term stability in wastewater treatment, establishing AI-driven 
optimization as a scalable and efficient solution for modern wastewater treatment needs. 
 
4 Conclusions 
This study demonstrates that AI-driven machine learning models, when combined with optimization algorithms, 
significantly enhance biological degradation efficiency in wastewater treatment by dynamically adjusting key 
parameters like temperature and dissolved oxygen. The optimized process achieved notably higher COD and BOD 
removal rates compared to conventional methods, with average reductions of 58% for COD and 55% for BOD, 
reflecting substantial performance improvements. Sensitivity analysis identified temperature and dissolved 
oxygen as the most impactful parameters, highlighting the importance of their real-time control. This integrated 
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AI-driven approach offers a promising path for consistent, sustainable pollutant removal, providing modern 
wastewater treatment facilities with a scalable, adaptive solution for managing diverse and variable treatment 
demands. 
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